

Sed Rate Screener 100/II (SRS100/II) inklusive Software (G2S140BO, Vers. 1.4)

BSG-Lesegerät

Benutzerhandbuch

MAN-001 – Revision 09 Revision Datum: September 2016 Dieses Handbuch befolgt die CEN/TC 140 Empfehlungen für in-vitro diagnostische Geräte (EN ISO 18113-3:2009)::

INSTRUMENT NAME: Sed Rate Screener 100/II (SRS 20/II)

inklusive Software (G2S140BO, Vers. 1.4)

Kurzname: SRS 100/II

Automatischer Sed-Rate Analyzer,

100 Messkanäle.

Greiner Bio-One GmbH

Bad Haller Straße 32 A-4550 Kremsmünster

AUSTRIA

Tel.: +43 (0)7583 6791-0 Fax.: +43 (0)7583 6318 Mail: office@at.gbo.com

LESEN SIE BITTE DAS GESAMTE HANDBUCH, BEVOR SIE DAS INSTRUMENT ZUM ERSTEN MAL VERWENDEN.

CONTENTS

1.	VORWORT	5
1.1	Anwendung	5
2. G	GEFAHREN UND SICHERHEITSHINWEISE	5
2.1	VORSICHTSMAßNAHMEN	5
	2.1.1 Anwendungsgebiet	
	2.2 Elektrische Ausrüstung.	
	MECHANISCHE TEILE	
2.4	BIOLOGISCH GEFÄHRLICHE FLÜSSIGKEITEN 2.4.1 Humane Proben	
	2.4.2 Abfalllösung und feste Abfälle	
	HINWEISE FÜR SICHERHEITSMAßNAHME	6
	ENTSORGUNG UND RECYCLING	
	ENTSORGUNG BIOLOGISCH INFEKTIÖSER TEILE ZUSÄTZLICHE VORSICHTSMAßNAHMEN	
3. II	INSTALLATION	8
	Power on	
	GERÄTEEINSTELLUNG	
	Instrument Stand-by	
4. S	SYSTEM BESCHREIBUNG	10
4.1	PROBEN-ENTNAHME	10
	ETIKETTIERUNG	
	HANDHABUNG DER BSG-PROBEN-RÖHRCHEN	
	MISCHEN DER PROBE EINFÜGEN DER PROBE	
	IDENTIFIKATION-SYMBOLE ZUR EINGEFÜGTEN / NICHT EINGEFÜGTEN PROBE	
	LEISTUNGSKRITERIEN UND EINSCHRÄNKUNGEN	
4.8	Analysen Funktionsfolge	14
5. S	SOFTWARE	15
	ID: (FUNKTION: 1)	
	MEM: (FUNKTION: 2)	
	QC: (FUNKTION: 3)	
	HOST: (FUNCTION: 5)	
	SETUP: (FUNCTION: 6)	
5.7	PAPIER-VORSCHUB:	20
6. R	RESULTATE	21
	S 100/II KANN VERSCHIEDENE RESULTATE AUSGEBEN:	
6.1	RESULTAT-KORREKTUR AUF 18°C	21
7. V	WARNUNGEN MIT ERKLÄRUNG	22
	"LEV" (NIVEAUFEHLER)	
	"REM" (FEHLER –PROBE VORZEITIG ENTFERNT)	
7.3	SYSTEM FEHLERWARNUNG.	22
	WARTUNG	
	REINIGUNGSANLEITUNG	
	ANLEITUNG ZUM PAPIER-AUSTAUSCH	
9. T	FROUBLESHOOTING HINWEISE	26

10. TECHNISCHE SPEZIFIKATIONEN SRS 100/II	27
11. VERPACKUNGSANGABEN	28
APPENDIX	29
A. THEORETISCHE INFORMATION	29
A.1 Westergren Methode	29
A.2 Tabelle von normalen BSG-Werten für die Westergren Method	
A.3 Variations of ESR	29
B. DRUCKERTYPEN PROTOKOLLBESCHREIBUNG	31
C. HOST VERBINDUNG PROTOKOLL	32
D. INSTRUMENT CONNECTORS	35

1. VORWORT

1.1 Anwendung

Der SRS 100/II ist ein automatisiertes Gerät und wird von einem Mikroprozessor kontrolliert. Das BSG-Analysengerät wird für die automatische Analyse der Blutsenkungsgeschwindigkeit eingesetzt. Der SRS 100/II untersucht gleichzeitig 10 Blutentnahmeröhrchen, die speziell für die BSG-Analyse hergestellt werden.

Der SRS 100/II untersucht die Blutsenkungsgeschwindigkeit jeder Probe unabhängig voneinander, und speichert die Niveaus während der gesamten Analyse.

2. GEFAHREN UND SICHERHEITSHINWEISE

2.1 Vorsichtsmaßnahmen

Vor dem Beginn der Nutzung des Analysengerätes muss der Betreiber die Vorschrift für den Umgang mit potentiell infektiösem Material und für den Umgang mit elektro-mechanischen Systemen kennen.

2.1.1 Anwendungsgebiet

Das BSG-Analysengerät ist für den professionellen Gebrauch bestimmt. Der Betreiber muss für die Arbeit im Labor mit gefährlichen Materialien und professioneller Ausrüstung geschult werden. Die Anwendung des BSG-Analysengerätes durch ein nicht geschultes Bedienpersonal gilt nicht als bestimmungsgemäß.

2.2 Elektrische Ausrüstung

Wie bei allen elektrischen Geräten, ist die Stromversorgung eine potentielle Gefahrenquelle. Bitte vermeiden Sie den Umgang mit elektrischen Teilen vor dem Ausstecken von der Stromversorgung. Führen Sie niemals Instandhaltungsarbeiten an dem Instrument durch, solange es unter elektrischer Spannung steht. Solange das Gerät montiert ist, wie es geliefert wurde, ist der Anwender vor Stromschlägen geschützt. Achten Sie auf die folgenden elektrischen Teile: dem Netzteil und der Drucker. Das SRS 100/II Analysengerät wird mit Kleinspannung betrieben und stellt dadurch nicht die gleichen Gefahren dar, als wenn das Gerät direkt durch eine elektrische Leitung mit Netzstrom versorgt. Auch wenn es eine Spannungswandlung im Inneren erfolgt und somit elektrische Schocks erzeugt werden können, so ist es für das ausführende Service-Personal nicht gefährlich. Wir schlagen vor die Spannungsversorgung jedes Mal vor einer technischen Gerätewartung zu trennen.

2.3 Mechanische Teile

Für die mechanischen Teile des Analysengerätes empfehlen wir, vor dem Öffnen des Gerätes die Stromversorgung abzuschalten. Wenn das Gerät eingeschaltet ist, so ist es nicht gefährlich für den Bediener, es könnte jedoch das Instrument beschädigt werden, wenn er/sie in Kontakt mit den beweglichen Teilen kommt.

2.4 Biologisch gefährliche Flüssigkeiten

Alle biologischen Flüssigkeiten müssen vom Anwender als potenziell infektiös betrachtet werden. Auch wenn es nicht notwendig ist die Kappe während der Analyse zu entfernen (und es gibt keinen direkten Kontakt mit Blut), so hat der Anwender die nationalen und internationalen Standards für Warnungen anzuerkennen, um biologische Gefahren zu

vermeiden. Auch qualifizierte technische Anwender müssen die gleichen Warnungsangaben während der Gerätewartung beachten.

2.4.1 Humane Proben

Tragen Sie immer Handschuhe und Augenschutzbrille, wenn Sie mit menschlichen Proben hantieren. Behandeln Sie alle Proben als potenziell biologisch gefährlich und ansteckend. Wenn eine Probe auf dem Gerät verschüttet wird, verwenden Sie die richtige persönliche Schutzausrüstung (PSA-Handschuhe, Labormantel, etc.), wischen Sie sie sofort auf und reinigen Sie die kontaminierte Fläche mit einem Desinfektionsmittel (e.g. Natrium Hypochlorit 0,5%) Lösung.

2.4.2 Abfalllösung und feste Abfälle

Vermeiden Sie direkten Kontakt mit Abfalllösung und / oder feste Abfälle. Beide sollten als potenziell biologisch gefährlich behandelt werden. Entsorgen von Abfalllösung und / oder feste Abfälle soll entsprechend den örtlichen behördlichen Vorschriften erfolgen.

2.5 Hinweise für Sicherheitsmaßnahme

Bitte achten Sie auf die korrekte Blutabnahme. Die Vakuum-Blutröhrchen sind für die Anwendung auf diesem Instrument ausgelegt und sollten immer die richtige Menge Blut ansaugen. Das Blutröhrchen sollte nicht überfüllt werden, denn dies könnte eine Undichtigkeit und Infektionsrisiko verursachen. Des Weiteren kann die Leckage den inneren optischen Teil des Instruments beschädigen und demzufolge die Garantie erlöschen.

2.6 Entsorgung und Recycling

Hiermit erklären wir, dass dieses Instrument der europäischen Richtlinie 2002/96 / EG (RAEE Richtlinie) und 2003/108/EG unterliegt. Deshalb muss das Gerät separat entsorgt werden, nicht als Siedlungsabfälle und an spezifische Sammelstelle gemäß der Richtlinie 2002/96/EG und 2003/108/ EG geliefert werden.

Der Benutzer kann verlangen, dass der Lieferant für die korrekte Entsorgung des Gerätes aufkommt, wenn ein neues Gerät bestellt wird.

2.7 Entsorgung biologisch infektiöser Teile

Alle Teile, die einen direkten Kontakt mit den Proben haben müssen als potentiell infektiös entsorgt werden. Beachten Sie die örtlichen Vorschriften.

2.8 Zusätzliche Vorsichtsmaßnahmen

Die folgenden Symbole sind auf dem Gerät platziert, um korrekte Verwendung zu gewährleisten,:

Achtung: Lesen Sie die Bedienungsanleitung

Nur für In Vitro Diagnostische Anwendung

ELEKTROSTATISCHE ENTLADUNG Sensitive Device (ESDS): Die Vorrichtung könnte durch elektrostatische Potentiale beschädigt werden

BIOHAZARD RISIKO

Verwendung von Schutzmaßnahmen zur Vermeidung von Kontaminationen (Handschuhe, Brillen usw. ...)

DO NOT DISPOSE

Das Gerät darf nicht mit dem Hausmüll entsorgt werden

DC DIRECT CURRENT

3. INSTALLATION

3.1 Positionierung des BSG Analysengerätes

Der SRS 100/II darf nicht neben (oder in der Nähe von) Apparaten aufgestellt werden, die Vibrationen erzeugen; z.B. Zentrifugen, Schwingapparaten oder andere Geräte, die Schwingungen am Arbeitsplatz verursachen könnten.

Der Arbeitsplatz muss eben sein, sowie direkte Sonnenbestrahlung des Gerätes und plötzliche Temperaturveränderungen sollten vermieden werden.

3.2 Power on

Schließen Sie das Netzteil und all anderen Geräte entsprechend deren Beschreibung an die Geräteanschlüsse an. Stecken Sie den Netzstecker des Netzteiles in eine Netzsteckdose mit Erdung. Schalten Sie den SRS 100/II mittels des Hauptschalters an der Rückseite des Gerätes ein. Nach jedem Einschalten führt der SRS 100/II eine Initialisierung der elektronischen Komponenten, sowie eine Überprüfung der Mechanik mittels Auto-test durch.

Dabei wird die folgende Information ausgedruckt:

SRS 100/II V. X.XX (Software-Version)
(Datum) (Zeit)
Temperatur ref. nach 18 C (falls Temperaturkorrektur programmiert wurde)
Temperatur (interne Instrument-Temperatur)

Am Display erscheint:

Diese Anzeige erscheint jedes Mal, wenn das Instrument 24 Stunden ausgeschaltet war. Diese Meldung zeigt an, dass durch Drücken von "ENT", alle Daten vom Vortag gelöscht und der Speicher auf Null gesetzt wird. Durch Drücken der Taste "ESC", bleiben alle Ergebnisse im Speicher (max. 500 Ergebnisse) erhalten.

THE DAY IS CHANGED...

deleting results...
(ENT to accept!)
press ESC to abort!

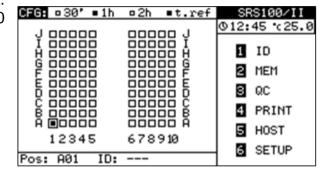
SRS100/II 1.0 CHECKUP...

Instrument führt die Initialisierung durch.

Am Ende der Initialisierung erscheint diese Meldung:

SRS100∕II 1.0 self-test OK..

SRS100/II 1.0 wait, please...


Hauptmenü:

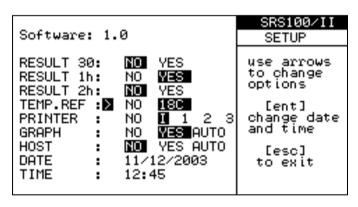
Am Display erscheint das Hauptmenü:

In der ersten Zeile "CFG", wird die Geräte-Konfiguration angezeigt. Diese sind die verschiedenen wählbaren Messzeiten 15, 30 oder 60 Minuten. Welche Messzeit aktiv ist,

wird über das ausgefüllte Quadrat angezeigt. Das BSG Ergebnisse bezieht sich auf 30 Minuten, 1 Stunde oder 2 Stunden Westergren. Wenn das quadratische Feld neben "T.ref", im Bildschirm angezeigt wird, ist die Temperaturkorrektur auf 18 °C aktiv, an sonst ist diese deaktiviert.

Die Konfiguration kann in der Funktion 6 Setup geändert werden. Im unteren Teil des Bildschirms kann die ID einer im Analyser

eingesetzten Probe sowie Position gelesen werden. Bewegen Sie dazu mit den Pfeiltasten den Cursor einfach auf dem Bildschirm zur Position der gewünschten Probe.


Die Funktionen im rechten Bildschimbereich sind von 1 bis 6 nummeriert. Die Erklärung der verschiedenen Funktionen entnehmen Sie bitte dem Kapitel "Software".

3.3 Geräteeinstellung

Wenn das Gerät installiert ist, kann der Anwender durch Eingabe von Funktion 6 "SETUP" im Stand-by Mode die gewünschte Arbeitsmethode einstellen. Folgen Sie dazu dem den Angaben im Display:

Benutzen Sie dazu die Pfeiltasten auf der Tastatur, um mit dem Zeiger die gewünschte Konfiguration einzustellen.

Dieses Instrument hat einen internen Thermal Printer eingebaut und als Standardeinstellung sollte "I"(Internal) eingestellt sein. Falls Sie einen externen Drucker anschließen möchten, so wählen Sie 1 oder 2 oder 3 entsprechend dem Druckertyps.

Zur Anzeige der Sedimentationskurve wählen Sie "YES". Falls "AUTO" ausgewählt wurde, so wird der Graph automatische am Ende einer Analyse ausgedruckt.

3.4 Instrument Stand-by

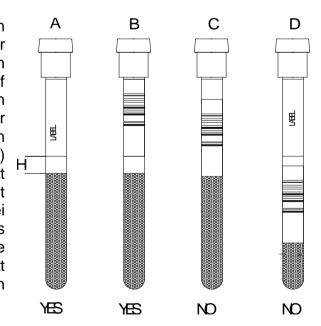
Im Stand-by-Modus ist das Gerät bereit Proben für eine Analyse zu akzeptieren. Vor dem Start ist es empfehlenswert das Kapitel 4. (SOFTWARE) dieses Handbuchs zu lesen.

4. SYSTEM BESCHREIBUNG

4.1 Proben-Entnahme

Das Patientenblut sollte entsprechend der Vakuum-Blutentnahmemethode in die VACUETTE® BSG-Blutentnahmeröhrchen mit 1,6ml Füllvolumen (Art.Nr. 729093) bzw. VACUETTE® BSG-Kunststoffröhrchen mit 1,5ml Füllvolumen (Artikelnr. 729073) entnommen werden. Warten Sie während der Abnahme auf das vollständige Befüllen der Röhrchen, um das korrekte Nennvolumen zu erhalten.

Das BSG-Blutentnahmeröhrchen enthält 3,2% Natrium Citrat als Antikoagulanz und folglich muss das Röhrchen mit dem entnommenen Blut mindestens 5 Mal vorsichtig geschwenkt werden.


Falls der SRS 100/II in der Notaufnahme (oder Ordination) installiert wurde, kann die Probe sofort analysiert werden, indem die Probe in die erste freie Lese-Position eingestellt wird. Andernfalls muss die Probe innerhalb von 3 Stunden analysiert werden nach der Blutabnahme, unter Beachtung von folgenden externen Einflüssen, welche die BSG in der präanalytischen Phase beeinflussen können:

Externe Einflüsse auf ein gutes Resultat

- a) Verdünnungsverhältnis von Blutprobe zu Additiv
- b) Luftblasen
- c) Stark hämolytische Proben
- d) Plötzliches Schütteln
- e) Temperatur
- f) Zeitspanne nach der Blutabnahme
- g) Direktes Sonnenlicht
- h) Schaum
- i) Lipämische Proben

4.2 Etikettierung

Identifizierung der Röhrchen entweder durch Anbringen von Barcodes oder durch Beschriftung des Originaletikettes am Röhrchen erfolgen. Bitte achten Abbildung 6, um ein falsches Anbringen von zusätzlichen Etiketten zu verhindern. In der Abbildung 6 haben alle Röhrchen die korrekten Blutniveaus. Röhrchen (A) und Röhrchen (B) haben ein korrekt angebrachtes Originaletikett bzw. Barcodeetikett. Der "H"-markierte Teil weist auf die Zone hin, die uneingeschränkt frei bleiben muss, damit die Infrarotstrahlen das Ende der Blutsäule erkennen können. Die Röhrchen (C) und (D) illustrieren, wie ein Etikett in der falschen Position das Ablesen behindern würde.

4.3 Handhabung der BSG-Proben-Röhrchen

4.3.1 Handhabungsanforderungen

Um die richtige Blutmenge (1,6ml bei Glasröhrchen und 1,5ml bei Kunststoffröhrchen) zu entnehmen, muss das Vakuumröhrchen ordnungsgemäß in den Halter eingesetzt werden. Erst wenn das vollständige Nennvolumen mit dem Röhrchen entnommen worden ist, sollte es entfernt werden.

In Falle, dass Röhrchen konnte nicht ordnungsgemäß gefüllt werden, so wird der SRS 100/II den Fehler "**lev**" (Level Error = fehlerhaftest Niveau) zur Analyse ausgeben. Das Sedimentationsergebnis wäre an sonst aufgrund einer beeinträchtigten Verdünnung mit Antikoagulanz verfälscht.

Alle Vakuumröhrchen müssen nach der Blutentnahme vorsichtig geschwenkt werden. Damit wird gewährleistet, dass der Natrium Zitrat Zusatz mit der entnommenen Blutmenge richtig gemischt wurde.

Die Röhrchen sollten 5mal geschwenkt werden, wobei die Luftblase das Röhrchen vollkommen durchlaufen muss.

Eine BSG-Analyse sollte bei Raumtemperatur innerhalb von 3-4 Stunden nach der Blutentnahme durchgeführt werden. Im Kühlschrank ist die BSG-Probe bis zu 24h haltbar. Die Untersuchung darf anschließend nur bei Erwärmung der Probe auf Raumtemperatur erfolgen.

4.3.2 Lagerbedingungen

BSG-Proben-Röhrchen sollten vor der Abnahme (in der Verpackung von 50 Stück) immer unter 30 °C und nie in die Nähe von Wärmequellen (Heizung) oder neben dem Fenster gelagert werden, wo direktes Sonnenlicht unerwartete Erwärmungseffekte verursachen kann.

4.4 Mischen der Probe

Wenn die Probe nicht sofort nach der Blutentnahme analysiert werden kann, so muss diese vor dem Einstellen in den BSG-Analyzer sorgsam geschwenkt werden, für mindestens 5 Minuten. Es ist empfehlenswert, dazu den Multi-Mixer (auf Wunsch erhältlich unter der Art. Nr. 836586) zu verwenden. Die empfohlene Programmeinstellung ist "P3", mit einer Umdrehungsanzahl von 15 – 20 Upm.

4.5 Einfügen der Probe

Bitte platzieren Sie die Proben unmittelbar nach dem Mischen im SRS 100/II. Es ist empfehlenswert, den Mischer in die Nähe des SRS 100/II zu stellen. Um Verzögerungen zu vermeiden, ist es empfehlenswert die Probe nach dem Mischen zu identifizieren. (Funktion ID 1)

Bei größeren Mengen von Proben wäre es empfehlenswert, die Patienten-ID (Funktion ID 2) einzugeben, und anschließend die Proben ins Gerät einzufügen, anhand der Positionen in der ausgedruckten Probenliste.

Die Proben-Position im Aufstellungsbereich des BSG-Instruments in in der horizontalen Reihe von 1 bis 5 und Vertikal 6 bis 10 nummeriert, um die Position in der vertikalen Reihe zu erkennen.

4.6 Identifik	ation-Symbole zur eingefügten / nicht eingefügten Probe
	leere Position, kann als nächstes verwendet werden
	eingestellte Probe ohne vorherige Identifikation
	Position mit Pat ID, erwartet einzustellende Probe
	identifizierte und folglich analysierte Probe
0	Ende der Analyse

+/- 0,2 mm

4.7 Leistungskriterien und Einschränkungen

Mechanische / optische Genauigkeit der Dedektion

1) LEISTUNGSKRITERIEN

B. C.	Reproduzierbarkeit der Analyse (Lesezeit 15 Min.) Reproduzierbarkeit der Analyse (Lesezeit 30 Min.)	R2 = 0,971 R2 = 0,972
D.	Automatische Temperaturumrechnung auf 18°C. (Manley table)	Akzeptierter Bereich ist 15°C – 32°C
E.	Akzeptierter Bereich des Blutinhalt in den BSG- Probenröhrchen	-10 bis +4 mm vom Normal

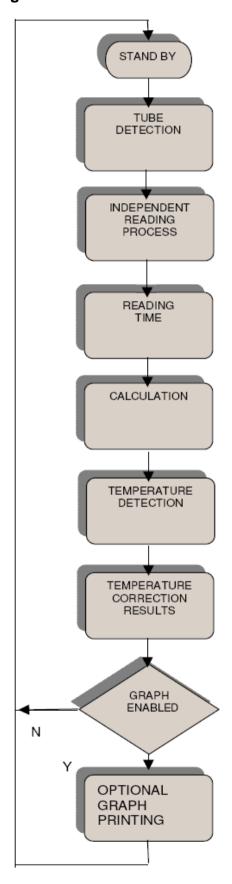
F. Messbereich 1 - 140 mm/h

G. Speicherkapazität bis zu 500 Resultate

H. Einschränkung Patientenidentifikation bis zu 12 Stellen

2) EINSCHRÄNKUNGEN

A. Extrem lipämische oder hämolytische Proben können die Ablesefähigkeit verändern.


B. BSG-Werte > 140 mm/h werden nur mit diesem Zeichen ausgegeben.

C. Temperaturen außerhalb des akzeptierten Bereiches werden als min. 15°C und max. 32°C dargestellt

4.8 Analysen Funktionsfolge

SRS100/II

SRS100/II

insert id

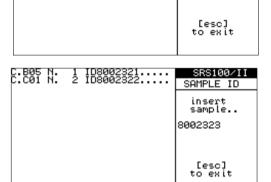
5. SOFTWARE

5.1 ID: (Funktion: 1)

Zur Probenidentifikation gibt es zwei Möglichkeiten:

| Use | Color | Use | Use | Color | Use | Use | Color | Use | Use | Color | Use | Color | Use | Color | Use | Use | Color | Use | Us

C.B05 N. 1 ID8002321..... C.C01 N. 2 ID8002322.....


■2h ■t.ref

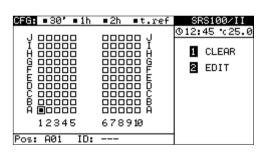
CFGR ■30′ ■1h

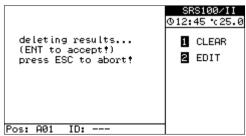
<u>ID1</u>: Identifikation bzw. Einfügen der Probe

Das Instrument fordert zur Eingabe Proben-ID auf, die mittels Keyboard oder Barcode Scanner durchgeführt werden kann.

Das Instrument wartet auf das Einfügen der Probe an einer beliebigen, freien Position. Die so ausgewählte Position wird identifiziert und links im Display mit den relativen Proben-Informationen dargestellt. Wenn Sie keine weiteren Proben für die Identifikation haben, so können Sie durch drücken von [ESC] in das vorherige Menü zurückkehren. Sie können mit der [ESC] Taste auch jederzeit die Wartezeit auf eine weitere Probe unterbrechen, falls nötig.

ID2: Identifikation der Probe ohne sofortiges Einfügen (anhand einer Arbeitsliste)

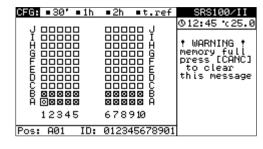

Der Unterschied zu ID 1 liegt darin, dass das Gerät die Positionskoordinaten automatisch für die identifizierte Probe vergibt. Achten Sie beim Einfügen der Probe genau auf die richtige Position, um Verwechslungen zu vermeiden.

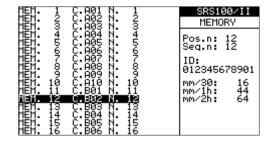

5.2 MEM: (Funktion: 2) Speicher-Management.

Das "MEM" Menü ermöglicht es dem Bediener, die gespeicherten Ergebnisse zu verwalten. Mit "CLEAR" wird der gesamte Speicher gelöscht. Mit der "EDIT"-Funktion können einzelne Daten bearbeitet werden.

CLEAR: Löschen des Resultatspeichers

Mit dieser Funktion werden die gesamten Resultate gelöscht, und die numerische Reihenfolge neu gesetzt. Wenn Sie auf "CLEAR" drücken, wird eine Bestätigung angefordert. Drücken Sie auf die [ENT]-Taste. Wenn diese Daten gelöscht werden, so hat dies keinerlei Auswirkung auf den Qualitätskontrolle (QC).




Es können bis zu 500 Resultate gespeichert werden. Wenn die Kapazität überschritten wurde, so wird im "Warnung full". Display memory mit "Aufforderung die [CANC]-Taste drücken" zu angezeigt, um diesen Hinweis zu deaktivieren. Dabei werden keine Resultate aus dem Speicher gelöscht, sondern nur dieser Hinweis quittiert. Damit weitere Resultate gespeichert werden können, muss durch

löschen von Resultaten weiterer Speicherplatz freigemacht werden.

EDIT: Bearbeiten von gespeicherten Resultaten

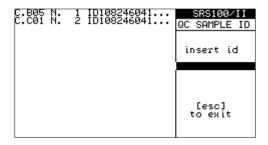
Mit dieser Funktion können die Daten im Speicher aufgerufen und bearbeitet werden. Mit den Pfeiltasten kann der Zeiger nach links und rechts, sowie durch Seiten geblättert werden. Durch Drücken der [ENT]-Taste ist es möglich die Resultat-Werte zu bearbeiten bzw. Fehler zu löschen, welche das Instrument erkannt hat. Beachten Sie, dass die Ergebnis

Optionen (30 ', 1h, 2h) nur sichtbar sind, wenn das Ergebnis Format für die jeweilige Probe aktiviert wurde.

5.3 QC: (Funktion: 3) Allgemeine Informationen

Das Gerät ist mit einem vollständigen Qualitätsmanagementsystem ausgestattet. Damit wird die zuverlässige Funktionstüchtigkeit beim Ablesen sowie Berechnen gewährleistet.

Die theoretischen Werte von Kontrollproben können eingegeben werden, um das Kontroll-Ablesen mittels deren Identifikation (Barcode) zu aktivieren, um die Kontrollkurve anzusehen/auszudrucken oder falsch

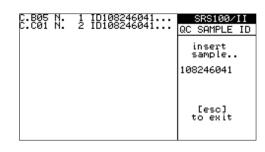

eingegebene Daten zu löschen. Es ist nicht möglich, die vom Gerät gemessene Kontrollwerte zu verändern. Des Weiteren gibt es zwei Speicher-Management, einer für normale Kontrollen und einer für pathologische Kontrollresultate. Falls es notwendig ist, kann der Kontrollspeicher auch gelöscht werden. Für beide Speicher beträgt die Kapazität 30 Werte – ein Wert pro Tag, über einen Monat.

WICHTIG: Für die korrekte Anwendung des Kontroll-Blutes, lesen Sie bitte sorgfältig die im Hämatologie-Kontroll-Kit enthaltene Anleitung.

QC / ID:

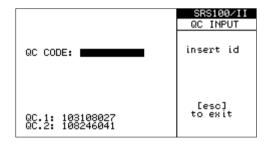
Identifikation und einfügen der Kontroll-Probe.

Wie für die normale Funktion der Proben-ID, erlaubt diese Funktion die Eingabe von Codes für die Identifikation von zu analysierenden Kontroll-Proben. Das Instrument akzeptiert nur Codes die vorher mit der Funktion "ID/INP" eingegeben wurden.



Zuerst wird die Angabe des Codes erforderlich und dann das Einsetzen der Probe erwartet. Das Gerät identifiziert die Position automatisch und zeigt auf der linken Seite der Anzeige, Kontroll-Proben, deren Koordinaten und Code.

Die Taste [ESC] erlaubt es das Verfahren des Einfügens zu unterbrechen. Die so identifizierten Proben werden wie die normalen Proben analysiert

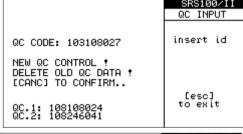


und das Endergebnis steht sowohl in der Ergebnisliste als auch im Speicher des Kontroll-Speichers zur Verfügung.

QC / INP:

Eingabe der theoretischen Kontroll-Werte

Diese Funktion ermöglicht das Einfügen von theoretischen Daten mit Bezug auf Kontrollen, die zur Überprüfung der korrekten Funktion des Gerätes verwendet werden. Der Identifikationscode ist erforderlich und dieser enthält alle notwendigen Informationen. Dieser Code ist im Kontroll-Kit enthalten und können leicht mittels dem Instrument



verbundenen Barcode-Lesers eingefügt werden. Alternativ kann der Code über die Tastatur eingefügt werden.

Falls der eingegebene Code nicht korrekt ist, so zeigt das Instrument am Display eine Fehlermeldung an.

Wenn der eingegebene Code vom Instrument anerkannt wird, so sind keine weiteren Operationen notwendig. Falls der neue Code nicht gekannt ist, so warnt das Instrument, dass es ein neuer Code ist und erwartet eine Bestätigung durch den Anwender, um mit Rückgängigmachung des Speichers relativ zur Art der Kontrolle zuvor weiter eingefügten werden.

Die Löschung der Speicher ist notwendig, um Gegenüberstellungen von Daten verschiedener Kontrollen zu vermeiden. Die Bestätigung erfordert das Drücken von 2 verschiedenen Tasten: [CANC] und dann [ENT].

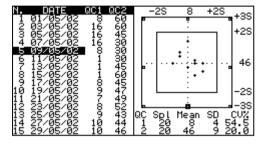
	SRS100∕II QC INPUT
QC CODE: 103108027	insert id
NEW QC CONTROL ! DELETE OLD QC DATA ! [CANC] TO CONFIRM [ENT] TO CONFIRM	[esc]
QC.1: 108108024 QC.2: 108246041	to exit

QC / EDIT:

Anzeigen und Bearbeitung von Kontroll-Werten

Diese Funktion ermöglicht die Visualisierung und Ändern der theoretischen Werte der Kontrollproben. Mit Hilfe der Pfeiltasten links und rechts können Sie die Steuerelemente 1 oder 2 wählen und mit der [ENT]-Taste können Sie die Werte "Mean" und "SD"

TUESDIS SS DEE EDIT	000400.77
- THEORIC QC REF. EDIT -	SRS100/II
QC.1 QC.2	QC EDIT
ID: 108108024 ID: 108246041	
Lot : 108 Lot : 108	
Mean: 8 Mean: 46	[ent]
SD : 2 SD : 4	to edit
Calculated Calculated	use arrows
SMPL.N: 20 SMPL.N: 20	to move
MEAN : 8 MEAN : 46	[esc]
SD : 4 SD : 9	to exit
CV% : 54.5 CV% : 20.0	
ļ	

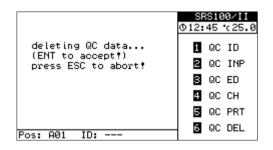


ändern. Mit der Taste [ESC] können Sie zum vorherigen Menü zurückzukehren. Der untere Teil des Bildschirms zeigt die Werte die durch das Instrument selbst berechnet und im Verhältnis zu den Ergebnissen in der Kontrollen-Speicher stehen.

QC / CH: (chart)

Anzeigen des Kontrollgraphen (Juden-Plot).

Diese Funktion zeigt die Kontrollgrafik in Bezug auf die gespeicherten QK-Werte, sichtbar links am Bildschirm. Der Zeiger wird in einer verkehrten Farbe angezeigt, und mittels der Pfeiltasten gesteuert. Rechts am Bildschirm wird die Kontrollgrafik angezeigt, sowie die Werte, die im kleinen Viereck hervorgehoben werden. Die Werte, die außerhalb des Kontrollbereichs liegen, sind in schwarzen Kästen. Die restliche Grafik besteht



aus einer Serie von Informationen, die das Gerät selbst ausrechnet; nämlich: Kontrollnummer, Anzahl der gespeicherten Ergebnisse, Durchschnitt, Normalabweichung sowie Koeffizient der durchschnittlichen Variierung. Die Punkte auf der Grafik stellen die Schnittpunkte dar, zwischen Normalkontrolle (horizontale Achse) und pathologischen Kontrollen (vertikale Achse). Die Werte außerhalb des mittleren Vierecks sind zulässig (Grenzwerte +/- 2s). Wenn die Werte sich außerhalb dieses Bereichs befinden, muss das System kontrolliert werden.

QC / DEL:

Löschung des Kontroll-Speichers

Mit dieser Funktion können die gesamten QK-Daten im Speicher gelöscht werden. Hinweis: die theoretischen Werte der Kontrollproben werden keineswegs geändert. Die Werte können nur mit den Funktionen QC/INP und QC/EDIT bearbeitet werden. Mit der [ENT] Taste wird die Löschung bestätigt.

5.4 PRINT: (Function: 4) Ausdrucken von Resultaten oder Arbeitsliste

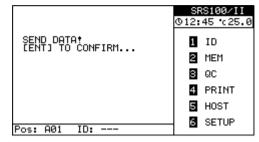
W.LIST:

Mit dieser Funktion wird eine detaillierte Liste der Proben ausgedruckt, die gerade analysiert werden. Die Daten werden gelistet, in Bezug auf die Koordinaten und ID-Codes.

MEMORY:

Mit dieser Funktion werden alle gespeicherten Ergebnisse ausgedruckt. Die Daten bestehen aus der

Folgenummer, ID-Code sowie den gespeicherten Ergebnissen.



5.5 HOST: (Function: 5)

Datenübertragung an ein HOST-System

Mit dieser Funktion werden die gespeicherten Ergebnisse vom Speicher übertragen.

Mit der [ENT] Taste wird die Übertragung bestätigt. Die Übertragung kann jederzeit mit der [ESC] Taste unterbrochen werden. Siehe im Anhang die Beschreibung des Protokolls zur Datenübertragung. Die Übertragung kann auch durch das Host-System angefordert werden, wie in Anhang beschrieben.



Es kann aber nur übertragen werden, wenn der Bediener nicht gerade am Gerät im Menü arbeitet. Aus diesem Grund schaltet sich das Gerät automatisch auf Hauptmenü, wenn die Tastatur eine Zeitlang nicht benutzt wird.

5.6 SETUP: (Function: 6) Konfiguration des Instruments

Dieses Menü beinhaltet eine Vielzahl an Konfigurationen, die vom Anwender eingestellt werden können.

Normalerweise wird die Konfiguration während der Installation durchgeführt, und weitere Änderungen sind selten notwendig.

Das Konfigurationsmenü kann nur aktiviert werden im Standby-Modus und wenn gerade keine Proben analysiert werden. Hinweis: Die Veränderung von bestimmten Parametern erfordert ein Rücksetzen des Gerätes. Dies wird automatisch vom Gerät erkannt, und es wird automatisch neu gestartet. Die Konfiguration stellen Sie ein, indem Sie die Zeiger mittels Pfeile bewegen. Die Konfiguration, die gerade eingestellt wird, ist durch den weißen Pfeil im schwarzen Kasten angezeigt. Um das Datum und die Uhrzeit einzustellen, drücken Sie auf [ENT] und geben Sie die Werte ein.

Normally configuration takes place during installation of the instrument and does not require modification.

Die für die Konfiguration möglichen Parameter sind:

- **MEAS.TIME: 15 ', 30' oder 60 '**: Der Bediener wählt die Zeit, welche das Instrument benötigt Ergebnisse auszugeben. Dies kann entweder 15 Minuten, 30 Minuten oder 60 Minuten.
- RESULT 30', 1h and 2h: Der Bediener kann wählen, in welchem Format (en), die Ergebnisse ausgegeben werden, die Möglichkeiten sind 30 Minuten, 1 Stunde oder 2 Stunden Westergren. Nicht alle Ergebnisformate sind mit allen Messzeitmöglichkeiten kompatibel. In 15 'Modus nur das 1h Ergebnis ist möglich, in 30' Modus der 30 'und 1h Ergebnis sind möglich, in 60' Modus werden alle Ergebnisformate möglich sind. Die Software wählt automatisch nur kompatibel Ergebnisformate. Der Bediener sollte die

Messzeit ändern (siehe oben), wenn das gewünschte Ergebnis Format nicht ausgewählt werden kann.

- **TEMP.REF.**: Falls diese Funktion gewählt ist ("YES") wird das Resultat auf die Standard-Temperatur von 18°C bezogen, um die Resultatverfälschung durch äußere Einflüsse zu vermieden.
- **PRINTER**: Diese Funktion erlaubt den Anwender die Auswahl von verschiedenen Druckern (siehe im Anhang). In der Grundeinstellung ist der interne Drucker ("I") eingestellt, welcher im Instrument eingebaut ist. Jede andere Auswahl bedarf eines externen Druckers, der an der Rückseite angeschlossen werden muss.
- GRAPH: Mit "NO" wird die Anzeige der Senkungskurve deaktiviert. Das Gerät liest nicht alle 3 Minuten das Niveau ab, um verlängert so die Lebensdauer der mechanischen und elektronischen Teile. Mit "YES" wird die Kurve angezeigt und des Weiteren ausgedruckt, wenn die [ENT] Taste betätigt wird. Wenn "AUTO" ausgewählt ist, wird die Kurve automatisch sowohl angezeigt als ausgedruckt.
- HOST: Wenn "NO" ausgewählt wird, wird die Initialisierung des Host-Systems deaktiviert. Die Funktion "HOST" steht jedoch zur Verfügung. Mit "YES" wird die HOST-Verbindung initialisiert, wenn das Gerät eingeschaltet wird. Wenn eine Verbindung mit dem HOST entsteht, können Daten übertragen werden. Die Option AUTO bedeutet, dass Daten automatisch übertragen werden, sobald die Analyse fertig ist. Nur die Daten betreffend der aktuellen Probe bzw. Proben-Identifikation werden übertragen.
- **DATE / TIME:** Hier können das Datum und die interne Uhrzeit eingestellt werden. So erscheint dann das Datum und die Uhrzeit am Ausdruck, bei der Übertragung und im Speicher

5.7 Papier-Vorschub:

Wenn das Instrument das Hauptmenü anzeigt, kann der Drucker das Papier durch Drücken der "CANC" Taste auf der Tastatur vorangetrieben werden. **Achtung**, ziehen Sie nicht das Papier mit der Hand. Wenn das Drucker-Papier ersetzt werden muss, folgen Sie bitte der Anweisung "**Anleitung zum Papier-Austausch**" am Ende dieses Handbuchs.

6. RESULTATE

SRS 100/II kann verschiedene Resultate ausgeben:

- a) Resultat korreliert auf 30 Minuten Westergren
- b) Resultat korreliert auf 1 Stunden Westergren (gebräuchlichste Einstellung)
- c) Resultat korreliert auf 2 Stunden Westergren

Der Anwender kann in der SETUP Funktion die Art der auszugebenden Resultate wählen. Die Arbeitszeit für Option a) ist 30 Minuten, hingegen für Option b) und c) 60 Minuten.

6.1 Resultat-Korrektur auf 18°C

Die erzielten Ergebnisse sind korreliert in der Referenzmethode, unter Berücksichtigung der Raumtemperatur. Der SRS 100/II misst kontinuierlich die Innentemperatur und wandelt ferner die Werte nach Manley, wie in der Darstellung von Tabelle (6) gezeigt, bei einer Temperatur von 18°C um. Deshalb gewährleistet dieses Instrument eine bessere Reproduzierbarkeit anstelle von Instrumenten, die Ergebnisse ohne Temperaturkompensation erbringen.

Tabelle (6) Manley Tabelle

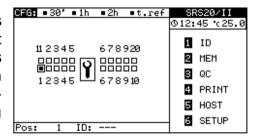
Referenz Werte			Analysen emperatur		
18 °C.	15° C.	18° C.	20° C.	25° C.	30° C.
5	4	5	5	6	8
10	9	10	10	12	16
20	18	20	21	25	31
30	27	30	31	37	45
40	36	40	42	49	58
50	46	50	52	60	71
60	55	60	62	71	82
70	63	70	72	82	93
80	72	80	82	93	104
90	81	90	93	103	114
100	90	100	103	114	125

Der SRS 100/II wandelt die Ergebnisse nach 18 Grad gemäß der Tabelle um, wenn Raumtemperatur sich im Bereich von 15 - 32 °C befinden. Für niedrigere oder höhere Raumtemperaturen zeigt das Gerät Temperatur in dieser Weise:

- 15 ° C für niedrigere Temperaturen
- 32 ° C für höhere Temperatur

7. WARNUNGEN MIT ERKLÄRUNG

7.1 " lev " (Niveaufehler)


Wenn "lev" gedruckt wird, hat das Gerät ein fehlerhaftes Probenvolumen gefunden. Das bedeutet, dass der Blutspiegel außerhalb des Bereiches + 4 oder - 10 mm von dem theoretischen Wert von 60 mm liegt (entsprechend einem Probenvolumen von 1,6 ml). Die Nachricht wird zusammen mit der Probe-Koordinaten ausgegeben, um eine leichte Identifizierung der falschen Probe zu ermöglichen. Probenentnahme muss wiederholt werden.

7.2 " rem " (Fehler – Probe vorzeitig entfernt)

Wenn "rem" gedruckt wird, hat das Instrument abnormales Verhalten der Probe, zum Beispiel extrem schnelle Sedimentation oder Entfernen von Rohr während der analytischen Phase gefunden. Die Nachricht wird zusammen mit den Proben-Koordinaten ausgegeben, um eine leichte Identifizierung und Ersatz der Probe zu ermöglichen.

7.3 System Fehlerwarnung

Wenn einige Schwierigkeiten bei der Bedienung des Gerätes auftreten, ist die Proben-Analyse nicht gefährdet, sondern ein Symbol wird in der Mitte des Monitors, wie im Bild rechts dargestellt werden. In diesem Fall muss das Gerät von einem Service-Techniker überprüft werden, um den Fehler zu identifizieren und zu eliminieren.

Wenn das Problem ernster ist (zum Beispiel das Instrument erkennt Probleme mit der mechanischen Bewegung der Lese-Platte), wird die folgende Meldung auf dem Display erscheinen: " **ERROR: System Stopped**...". Nach dieser Indikation stoppt das Gerät den Betrieb und der technische Dienst muss gerufen werden.

8. WARTUNG

Das Gerät benötigt unter normalen Bedingungen und Anwendung keine Wartung. Eine vorbeugende Instandhaltung kann einen spontanen Ausfall des Gerätes reduzieren. Bitte achten Sie auf die Sauberkeit des oberen Teils (Proben-Positionierplatte), dass diese abgedeckt ist, wenn das Gerät nicht verwendet wird. Reinigen Sie nicht die obere Platte mit Flüssigkeiten oder feuchte Tücher. Das Eindringen von Flüssigkeiten oder festen Material in die Positions-Kanäle kann erhebliche Schäden am Instrument verursachen. Reinigen Sie nicht die obere Platte mit Flüssigkeiten oder feuchte Tücher. Das Eindringen von Flüssigkeiten oder festen Material in den Kanälen kann zu erheblichen Schäden am Instrument verursachen.

8.1 Reinigungs- und Dekontaminationsanweisung

Der Staub kann mit einem üblichen Staubsauger entfernt werden. Achten Sie auf den Zustand des BSG-Röhrchen: es muss gut verschlossen sein und die Kappe darf auf keinen Fall entfernt werden. Das Etikett sollte in der richtigen Position und fest angeklebt sein. Sollten Fragmente des Etiketts in eine Röhrchen-Position fallen, so könnte ein korrektes Ablesen bei der Analyse gestört werden.

- 1. Wischen Sie möglicherweise kontaminierten Bereiche des SRT 10 / II nass mit einem Tuch oder einem Papiertuch und mit 1% Bleichlösung (Lösung A). Lösung A (etwa 1%): 200 ml Hypochlorid und 800 ml analysenreines Wasser.
- 2. Lassen Sie die Lösung für mindestens 15 Minuten einwirken.
- 3. Wischen Sie die Lösung A von den zu reinigenden Bereichen ab.
- 4. Wischen Sie den Bereich erneut mit einem Tuch oder Papiertuch und mit analysenreinem Wasser, um die Lösung A entfernen
- 5. Trockenen Sie die Flächen gründlich.

8.2 Anleitung zum Papier-Austausch

1) Drücken Sie den grünen Hebel nach unten – wie im Bild angezeigt – um den Druckkopf zu heben

2) Schneiden Sie das Papier wie im Bild gezeigt.

3) Ziehen Sie das Papier mittig unter der Vorschubrolle durch.

4) Richten Sie das Papier aus und drücken Sie den grünen Hebel nach unten – wie im Bild gezeigt.

HINWEIS: Wenn das Papier im Drucker einen Stau verursacht, gehen Sie bitte wie in Punkt n.1 vor, indem Sie den grünen Hebel drücken, um das Papier ohne Schäden vom Drucker-Werk entfernen zu können.

8.3 Periodische Überprüfung

Um die korrekte Funktion des Instrumentes zu sichern und exakte Ergebnissen zu generieren, muss am Instrument, einmal pro Monat, eine wiederkehrende Prüfung mittels "Greiner Control Unit" durchgeführt werden.

Dieses Tool kann auch von Service-Technikern verwendet werden, um die mechanische Funktionalität zu prüfen.

Es kann benutzt werden, um zu überprüfen:

- Mechanische Kalibrierung der Leseeinheit.
- Reproduzierbarkeit der mechanischen Füllstandsanzeige.
- Referenzlesung des Niveaus bei Zimmertemperatur.
- Umrechnung der Resultate bei der Referenztemperatur von 18°C.
- Interner Temperatursensor.

WIE IST "SELF TEST" FUNKTION ZU STARTEN

- Wählen Sie mit der Taste "6" die Menü-Funktion "Setup", und drücken Sie dann die Zahlen "002". Die Lese Platte beginnt sich nach oben und unten zu bewegen.
- Stellen Sie die "Control Tool" Röhren, mit Referenzpegel 60, 50 und 30 mm jeweils in die Positionen 1, 2 und 3 des Instruments.

Nach einer Weile (die Lese-Platte muss einen kompletten Zyklus auf/ab durchführen) und am Display erscheint die folgende Information (dies ist nur eine Beispielangabe).

- ← Interne Temperatur
- ← Mechanische Kalibrationsreferenz (300 +/- 10)
- ← Mechansiche Abweichung zwischen Ablese-Zyklen (+/-2)
- ← 1st row values
- ← 2nd row values

Die Werte in der 1. Resultatsreihe müssen sein: 1, 24(+/-5), 93 (+/-5)

Die Werte in der 2.Reihe hängen von der Temperatur im Geräteinneren ab. Damit Sie die Referenzwerte für die 2.Reihe erhalten, benötigen Sie die folgende Tabelle. Sehen Sie in der Spalte nach, in der Ihre interne Gerätetemperatur (im Display angezeigt) enthalten ist, um die passenden Referenzwerte zu erhalten.

Temperatur Korrektur Tabelle für die Resultate in der 2. Reihe (°C).

Referenz Werte	Temp. <= 16.3°	Temp. 16.4–18.7	Temp. 18.8–21.2	Temp. 21.3–23.7	Temp. 23.8–26.2	Temp. 26.3–28.7	Temp. 28.8–31.2	Temp. > 31.3
24	27	24	23	21	19	17	15	15
93	103	96	91	86	81	75	70	70

Hinweis: Die "Control Tool" Röhrchen haben kein Ablaufdatum. Sie müssen jedoch ersetzt werden, wenn eines davon hinunter gefallen und zerbrochen ist.

9. TROUBLESHOOTING HINWEISE

Bevor Sie einen Techniker anrufen, überprüfen Sie bitte das Handling während der Blutentnahme, des Mischvorganges und die Gebrauchsanweisung.

MELDUNG/PROBLEME	URSACHE	LÖSUNG
lev	 a) Niveau der Probe entweder zu hoch oder zu niedrig b) Die Aufschrift ist in der falschen Position. Beziehen Sie sich auf Seite 23. 	a) Probenentnahme wiederholenb) Aufschrift ersetzen und Analyse wiederholen
rem	Probe wurde vorzeitig entfernt	Analyse wiederholen
Temp. sensor error	"Temperaturfehler" Sensor Funktionsstörung	Die Daten sind nicht auf 18° umgewandelt – melden Sie sich beim Techniker
System stopped	Mechanischer Defekt oder Problem mit Motor	Rufen Sie den Techniker an
Die Ergebnisse werden nicht ausgedruckt	Überprüfen Sie ob in Menü SETUP (6), der Drucker aktiviert wurde (auf "I")	a) Stromversorgung überprüfenb) Kabel überprüfenc) Drucker ersetzen
Die Ergebnisse sind unwahrscheinlich	 a) Gerinnung der Probe b) Schaum in der Probe c) Mehr als 4 Stunden sind vorbei seit Probenentnahme d) Wurden die Anweisungen für die Probenmischung beachtet? e) Wurde die automatische Temp. Korrelation berücksichtigt? 	a) Probenentnahme wiederholen b) Probe nochmals sanft mischen
CCD Scanner liest die Barcodes nicht ab		a) Kabel überprüfenb) Scanner neu konfigurieren (Siehe Handbuch)c) Rufen Sie den Techniker an.
keine HOST-Verbindung	a) Kabel b) SRS 100/II im Hauptmenü? c) Keine Daten gespeichert	a) Kabel überprüfen d) Rufen Sie den Techniker an
Info am Display ist leserlich, aber Hintergrund ist dunkel.	Die Neonlampe ist defekt	Rufen Sie den Techniker an
Memory error	Speicher defekt	Rufen Sie den Techniker an
Die Tastatur funktioniert nicht		Rufen Sie den Techniker an
Fehler der Uhr	Die Batterie ist leer bzw. Uhr-IC defekt	Rufen Sie den Techniker an

HINWEIS:

Für die Validierung der Testergebnisse lesen Sie bitte:

CLSI (ehemals NCCLS) Document H2-A3 vol. 13 N°8

"Methods for the Erythrocyte Sedimentation Rate (ESR) Test"

Third edition; Approved Standard

(National Committee for Clinical Laboratory Standards)

10. TECHNISCHE SPEZIFIKATIONEN SRS 100/II

Anwendungsbereich: Analyse der Blutsenkungsgeschwindigkeit

Größe des Geräte: Breite 360 mm

Tiefe 455 mm Höhe 190 mm

Gewicht: ca. 9,0 kg

Spannungsversorgung: Externe Spannungsversorgung

Input: 100-240 VAC 50/60 Hz. 300 mA Output: + 5 VDC 1.8 A und + 12 VDC 0.5 A

Umgebungsbedinungen: Temperatur 15° - 32° C, Raumtemperatur

Luftfeuchtigkeit: 45% - 85%

Analysezeit: 15', 30' oder 60' (vom Anwender wählbar)

Analysen Kapazität: max 400 Teste/Stunde

Röhrchenpositionen: 100

Röhrchenkapazität: max. 100 Proben gleichzeitig

Ladereihenfolge: keine bestimmte

Resultate: in Westergren mm (durch Interpolation) korreliert auf

½ Stunde oder 1h oder 2h.

Temperatur Korrelation: Automatische Korrektur auf 18°C (Manley)

Messmethode: Infrarotbarriere
Auflösung des Ablesens: +/- 0,2 mm
Auflösung der Resultate: +/- 1 mm

Toleriertes Blutniveau in

Bezug auf Normal-Level +4 mm / -10 mm

Display: Graphisches LCD Display mit Hintergrundbeleuchtung

Keyboard: 15 Tasten

Schnittstelle: RS232 bi-direktional
Schnittstelle für Drucker: RS232 Serieller Ausgang
CCD Scanner Schnittstelle: TTL Serieller Eingang

Konformität: ISO 9001:2008, ISO 13485:2003, EN ISO 14971, EN ISO

18113-3, EN 13612, EMC Directive 2004/108/EC und LV

Directive 2006/95/EC und folgende Änderungen.

Allgemeine Richtlinien: 2002/95/EC

2003/108/EC

EMC Standards: EN 61326-6:2006

Safety Standards: IEC/EN 61010-1:2001

IEC/EN 61010-2-101:2002 IEC/EN 61010-2-051:2003

Maschinen Richtlinie: 98/79/EC

2006/42/EC

11. VERPACKUNGSANGABEN

KARTONGRÖSS: 43 x 60 x 30 cm

GEWICHT: 11 kg

Offener Karton

Schutz des Gerätes

VACUETTE Amender 1973 - Springer 1973 - Spring

Staub-Schutzhülle

ZUBEHÖR

Bedienungsanleitung

Netzteil

Netz-Kabel

Thermo-Druckerpapier

Control Unit

SRS 100/II Benutzerhandbuch page 28 of 35

APPENDIX

A. THEORETISCHE INFORMATION

A.1 Westergren Methode

Dies ist die Standard-Methode gemäß dem "National Committee for Clinical Laboratory Standards" (NCCLS). Sie besteht aus einem Senkungsständer, der die Westergren Röhrchen, welches antikoaguliertes Blut enthält, vertikal hält. Die Westergren-Röhrchen haben einen Durchmesser von nicht weniger als 2,55 mm, sind bis 200 mm lang und graduiert. Sobald die Blutprobe entnommen wurde, wird das venöse Blut mit einer Lösung von Trinatriumcitrat, 3,8% im Verhältnis 4 Volumen venösem Blut zu 1 Volumen Zusatz gemischt (1,6ml Blut + 0,4ml Trinatriumcitrat). Die so vorbereitete Probe wird gut vermischt und in eine Westergren-Pipette bis zur Null-Markierung aufgefüllt. Die Pipette wird in den passenden Ständer eingefügt, und das BSG-Resultat wird nach 60 und 120 Minuten abgelesen.

A.2 Tabelle von normalen BSG-Werten für die Westergren Method

Alter (Jahre)	männlich	weiblich	Upper limit (both)
18 – 30	3.1	5.1	10.7
31 – 40	3.4	5.6	11.0
41 – 50	4.6	6.2	13.2
51 – 60	5.6	9.4	18.6
over 60	5.3	9.4	20.2

A.3 Variations of ESR

A. Netto Zunahme von BSG (100 mm oder mehr pro Stunde)

- Multiples Myelom und Waldenstrom Makroglobulinämie
- 2. Bösartiges Lymphoma
- 3. Leukämie
- 4. Ernsthafte Anämie
- 5. Krebs
- 6. Sarkom
- 7. Ernsthafte Bakterieninfektion
- 8. Kollagenose
- 9. Gallen- oder Portalzirrhose
- 10. Eiterkolitis
- 11. Ernsthafte Nephrose

- 12. Interne Blutung
- 13. Extreme Hepatitis
- 14. Bauchhöhlenschwangerschaft, nach 3 Monaten nicht abgebrochen
- Abgebrochene Bauchhöhlenschwangerschaft
- 16. Menstruation
- 17. Normale Schwangerschaft ab 3. Monat
- 18. Einnahme von Antibabypillen
- 19. Tuberkulose
- 20. Postkommissurotomie-Syndrom
- 21. Intravenös gegebene Dextran

B. Mäßige Zunahme von BSG

- Akute und chronisch ansteckende
 Krankheiten
- 2. Akute lokalisierende Infektionen
- 3. Reaktivierung einer chronischen Infektion
- 4. Rheumatische Krankheit
- 5. Rheumatische Arthritis
- 6. Myokardinfarkt
- 7. Bösartiger Tumor mit Nekrose
- 8. Schilddrüsenüberfunktion
- 9. Schilddrüsenunterfunktion
- 10. Blei- oder Arsenvergiftung
- 11. Nephrose

C. Normale BSG (üblich)

- 1. Akute Blinddarmentzündung, erste Phase (die ersten 24 Stunden)
- Vorzeitige integrale Bauchhöhlenschwangerschaft
- 3. Malariales Paroxysmus
- 4. Zirrhose der Leber
- 5. Arthrose
- 6. Mononucleose
- 7. Akute Allergien
- 8. Virose ohne Komplikationen
- 9. Magengeschwür
- 10. Typhusfieber
- 11. undulierendes Fieber
- 12. Rheumatisches Karditis mit Herzdekompensation

¹⁾ THYGESEN, J.E.(1942). The mechanism of blood sedimentation. Acta Medica Scandinavica, Suppl. 134.

²⁾ WINTROBE,M.M. and Landsberg, J.W. (1935). A standardized technique for the blood sedimentation test American Journal of Medical Sciences, 189, 102

³⁾ HARDWICKE, J. and SQUIRE, J.R. (1965). The basis of the erythrocyte sedimentation rate. *Clinical Science*. **11**. 333

⁴⁾ International Committee for Standardization in Hematology (1977). Recommendation for measurement of erythrocyte sedimentation rate of human blood. *American Journal of Clinical Pathology*, **68**,505

⁵⁾ LASCARI, A.D. (1972). The erythrocyte sedimentation rate. Pediatric Clinics of North America, 19,1113

⁶⁾ MANLEY, R.W. (1957). The effect of room temperature on erythrocyte sedimentation rate and its corrections. *Journal of Clinical Pathology*, **10**, 354

⁷⁾ NCCLS Document H2-A3, vol. 13 N°8 " Methods for the Erythrocyte Sedimentation Rate" (ESR) Test

B. DRUCKERTYPEN PROTOKOLLBESCHREIBUNG

Die Drucker-Einstellungen können auf 5 verschiedene Modi gewechselt werden:

NO Drucker ist nicht aktiviert;

- I Interner Drucker APS CP205MRS;
- 1 für kundenspezifische Druckerprotokolle DP24 und DPT282 Drucker;
- 2 ESC/POS Graphic protocol type 1;
- 3 ESC/POS Graphic protocol type 2;

Das ESC/POS Typ 1 Protokoll verwendet folgende Kontroll-Codes:

ESC "1" 0 um min. Zeilengröße einzustellen (1/8")

ESC * 0 nn dt um graphische Linien zu drucken

ESC "1" 32 um Standard-Zeilengröße einzustellen (1/6")

The ESC/POS Typ 2 Protokoll verwendet folgende Kontroll-Codes:

ESC "0" 0 um min. Zeilengröße einzustellen (1/8")

ESC * 0 nn dt um graphische Linien zu drucken

ESC "2" 0 um Standard-Zeilengröße einzustellen (1/6")

C. HOST VERBINDUNG PROTOKOLL

Referred instruments: SRS 100	/II Software Version: V.1.4
-------------------------------	-----------------------------

Contents: - Description of the host connector pinout and output data format.

"HOST" CONNECTOR SIGNALS DESCRIPTION.

Instrument 9 pin male connector:

PIN I	DIRECTION	NAME	DESCRIPTION	
1			(Do not remort!)	
1			(Do not connect!)	
2	INPUT	RXD	Serial data input	
3	OUTPUT	TXD	Serial data output	
4	OUTPUT	DTR	Data Terminal Ready	
5		GND	Ground	
6			(Do not connect!)	
7			(Do not connect!)	
8	INPUT	CTS	Clear to send	
9			(Do not connect!)	

NOTE for system using only 3 wires: To force a 3 wires connection (TXD, RXD e $\tt GND$) it is possible to connect, on the device, pin 4 to pin 8.

EXAMPLE OF A CONNECTION TO A PC IBM COMPATIBLE COMPUTER

Note: Connectors are 9 pin female.

2 ----- 3 3 ----- 2 4 ----- 8 8 ---- 4

"HOST" CONNECTOR SIGNALS DESCRIPTION.

- 1) Data format is: 9600 bps, 8 data bit, 1 stop bit, no parity, hardware protocol RTS-CTS or no protocol.
- 2) In order to make this document clear the character tilde (" \sim ") is used in place of a space (" ") when there is more of one space and spaces are important for data collection.
- 3) Control characters sent by the instrument is:
 - STX code (2 decimal) in this document, replaced by the string "[STX]";
 - ETX code (3 decimal) in this document, replaced by the string "[ETX]";

"HOST/DATA TRANSMISSION" REQUEST FROM HOST COMPUTER

The host computer could require data transmission by sending the character "?". Data transmission starts only if the operator is not using the instrument. If the instrument still executing any menu command, no chars will be transmitted.


```
______
     MESSAGES SENT IN THE BEGINNING
Instrument model: "#MODEL: xxxxxxx V.1.4"
Note: The model name and version of the software can be different.
Device configuration: "#MODE: xx' T.CORRECTION ON"
where xx' is either 15', 30' or 60'. This indicates the analysis duration in minutes.
The string "~T.CORRECTION ON" will be added only if the temperature correction is
enabled.
Date and Time: "#DATE: GG/MM/AAAA~~HH:MM"
Operating temperature: "#TEMPERATURE: gg.rC"
where: gg.r is the operating temperature value with one decimal. Transmitted only if the
temperature correction is enabled.
     MESSAGE SENT FOR ANY RESULT STORED IN MEMORY
"sss ppp cccccccccc mm30 mm1h mm2h"
where: sss = is the sequential sample number (001 - 999).
      ppp = sample position
            example: on 100 channel instrument from "A01" to "J10"
                    on 20 channel instrument from "~~1" to "~20".
      cccccccccc = patient ID - code ("....." if not present), left aligned.
      mm30 = Sedimenation in 30 minutes, [mm/30']. Values can be shown as:
             "~~~0" sample under analysis.
             "~LEV" if error level.
             "~REM" if sample error.
             "~mmm" mmm = result in millimeters. (right aligned).
             ">140" result more than 140 millimeters.
      mm1h = Sedimentation in 1 hour, [mm/1h], whose values can be shown as:
             "~~~0" sample under analysis.
             "~~~" if there was an error.
             "~mmm" mmm = result in millimeters. (right aligned).
             ">140" result more than 140 millimeters.
      mm2h = Sedimentation in 2 hour, [mm/2h], whose values can be shown as:
             "~~~0"
                    sample under analysis.
                     if there was an error.
             " ~mmm "
                     mmm = result in millimeters (right aligned).
                    result more than 140 millimeters.
Note: the mm30, mm1h and mm2h results are only sent if these results formats are enabled
(via setup menu).
```

SRS 100/II Benutzerhandbuch page 33 of 35

DESCRIPTION OF THE DATA FRAME

Any string of characters is transmitted with the following frame:

<STX>string<ETX>ECC

ECC represent the checksum used to detect if a string transmitted is defective. The checksum is encoded as two characters sent after the <ETX> character. The checksum is computed by adding the binary values of the characters in a string (modulo 256) and keeping the least significant 8 bits of the result. The 8 bits can be considered as two groups of 4 bits which are converted to ASCII and represented in hexadecimal format. The two ASCII characters are transmitted as the checksum with the most significant character first.

Using the following frame as an example, the checksum for this frame is calculated.

Example:

<STX>ABCDEFGHI<ETX>70

Character	ASCII	value
А	065	1 st character for calculation
В	066	2 nd
C	067	etc
D	068	etc
E	069	etc
F	070	etc
G	071	etc
H	072	etc
I	073	etc
<etx></etx>	003	etc

Total sum value = 624 Module 256 (624) is: 112

Then 112 (decimal) is 70 (hex) ECC is: 70.

If ECC length is 1 character, the resultant ECC is adding a zero character (ASCII 48) on the left.

Example: First ECC: A The resultant ECC is OA

D. INSTRUMENT CONNECTORS

Please turn off the instrument before connecting a cable or device to the instrument's connectors.

PINOUT OF THE PRINTER CONNECTOR

	PIN	DIRECTION	NAME	DESCRIPTION
_	1 2			(Do not connect!) (Do not connect!)
	3	OUTPUT	TXD	Serial data output
	4	OUTPUT	DTR	Data Terminal Ready
	5		GND	Ground
	6			(Do not connect!)
	7			(Do not connect!)
	8	INPUT	CTS	Clear to send
	9			(Do not connect!)

PINOUT OF THE HOST CONNECTOR

	PIN	DIRECTION	NAME	DESCRIPTION
_	1			(Do not connect!)
	2	INPUT	RXD	Serial data input
	3	OUTPUT	TXD	Serial data output
	4	OUTPUT	DTR	Data Terminal Ready
	5		GND	Ground
	6			(Do not connect!)
	7			(Do not connect!)
	8	INPUT	CTS	Clear to send
	9			(Do not connect!)

PINOUT OF THE BARCODE CONNECTOR

WARNING: Connect only original scanners. Commercial scanner, with RS232 connection may damage the instrument.

	PIN	DIRECTION	NAME	DESCRIPTION
-	1			(Do not compost!)
	1			(Do not connect!)
	2			(Do not connect!)
	3	INPUT	RXD	TTL Serial data input
	4			(Do not connect!)
	5			(Do not connect!)
	6		GND	Ground
	7			(Do not connect!)
	8			(Do not connect!)
	9	OUTPUT	+5V	Scanner power supply