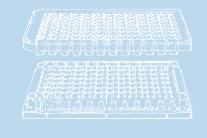
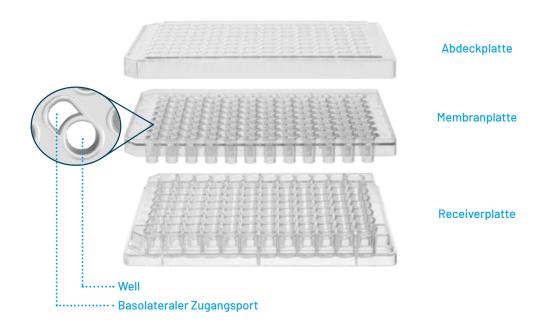


THINCERT® 96 WELL HTS INSERT Für Hochdurchsatz Transportstudien und

Co-Kulturen


ThinCert® 96 Well HTS Insert ist das neue, optimierte Zellkulturformat für alle Wissenschaftler, die Gewebe-modelle (z. B. Endothelien und Epithelien) für Transport-, Uptake- oder Co-Kultur-Studien in Air-Lift- oder submerser Kultur generieren und in hohem Durchsatz analysieren möchten.

Durch die Kombination des automationsfreundlichen 96 Well Formats mit hoher Membranpermeabilität und bestmöglicher Transparenz bietet Greiner Bio-One eine einzigartige Lösung für alle Anwendungen an, welche sowohl hohe Diffusionsraten als auch mikroskopische Analysen erfordern. Dies wird durch eine spezielle Porenanordnung und eine hohe Porendichte von 2 x 10⁷/cm² gewährleistet.


Darüber hinaus ergänzt eine Produktversion mit transluzenter Membran und einer Porendichte von 1 x 10⁸/cm² unser Portfolio. Sie bietet die optimale Lösung für Experimente, die maximale Diffusionsraten erfordern, jedoch keine mikroskopische Auswertung benötigen.

KEY FACTS

- Optimal für Transport- und Permeabilitätsstudien, Air-Lift-Kulturen, Co-Kulturen und Toxizitätsscreening
- 96 Well System für Anwendungen mit hohem Durchsatz
- / Automationsfreundliche Geometrie
- / Polycarbonat-Membran mit 0,4 μm Porengröße
- / Minimierung des Wicking-Effekts
- / Hohe Membranplanarität für reproduzierbare Zellkulturbedingungen

FÜR WEITERE INFORMATIONEN UND/ODER MUSTERBESTELLUNG BESUCHEN SIE UNSERE WEBSEITE ODER KONTAKTIEREN SIE UNS.

ThinCert® 96 Well HTS Insert besteht aus einer vollständig aus Polycarbonat (PC) gefertigten 96 Well Platte mit poröser Membran und einer Receiverplatte aus Polystyrol (PS). Die zellkulturbehandelte PC-Membran ermöglicht einen idealen Austausch von Nährstoffen und Substanzen für optimales Zellwachstum, invivo-ähnliche Kultivierungsbedingungen und Gewebedifferenzierung.

Wir haben die Zugangsports dahingehend optimiert, dass das untere (basolaterale) Kompartiment für Pipetten, automatisierte Liquid-Handling-Roboter sowie Elektroden für transepitheliale elektrische Widerstandsmessungen (TEER) bestens zugänglich ist. Der präzise, zentrierte Sitz der Membranplatte verhindert störendes Wicking* und sorgt für stabile und reproduzierbare Assaybedingungen.

ThinCert® 96 Well HTS Insert (Membran- und Receiverplatten)

Wachstumsfläche: 14 mm², Arbeitsvolumen (Well der Membranplatte): 15 - 160 µl, Arbeitsvolumen (Well der Receiverplatte): 120 - 300 µl, Abdeckplatte: ja, Kondensationsringe

ArtNr.	Porendichte	Ø Poren	Optische Eigenschaft der Membran	Oberflächen- behandlung	Steril	Stück UVP/VP
655640	1 x 10 ⁸ /cm ²	0,4 μm	transluzent	TC	+	1/5
655641	2 x 10 ⁷ /cm ²	0,4 μm	optimierte Transparenz	TC	+	1/5

Receiverplatten für ThinCert® 96 Well HTS Insert

Arbeitsvolumen (Well der Receiverplatte): 120 – 300 μl, Abdeckplatte: ja, Kondensationsringe

	•		-	
ArtNr.	Wachstumsfläche	Oberflächenbehandlung	Steril	Stück UVP/VP
655169	-	unbehandelt	+	8 / 32
655167	53 mm ²	TC	+	8 / 32

^{*} Wicking: Unerwünschte Bildung einer Flüssigkeitsbrücke zwischen oberem und unterem Kompartiment durch Kapillarsog bei geringem Abstand zwischen Membran- und Receiverplatte.